\(\int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [783]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 182 \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(1/8-1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)
/a^(5/2)/d+67/60/a^2/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/5/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/
2)+13/30/a/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {4326, 3640, 3677, 12, 3625, 211} \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {67}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}} \]

[In]

Int[Sqrt[Cot[c + d*x]]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((1/8 - I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(5/2)*d) + 1/(5*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + 13/(30*a*d*Sqrt[Cot[c +
 d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + 67/(60*a^2*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3640

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3677

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx \\ & = \frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {9 a}{2}-2 i a \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2} \\ & = \frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {41 a^2}{4}-\frac {13}{2} i a^2 \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx}{15 a^4} \\ & = \frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {15 a^3 \sqrt {a+i a \tan (c+d x)}}{8 \sqrt {\tan (c+d x)}} \, dx}{15 a^6} \\ & = \frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3} \\ & = \frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d} \\ & = \frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {1}{5 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {13}{30 a d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {67}{60 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.09 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\csc ^2(c+d x) \left (2 (19+86 \cos (2 (c+d x))+80 i \sin (2 (c+d x)))+\frac {15 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (\cos (2 (c+d x))+i \sin (2 (c+d x))) \sqrt {a+i a \tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}\right )}{120 a^2 d \sqrt {\cot (c+d x)} (i+\cot (c+d x))^2 \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[Sqrt[Cot[c + d*x]]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(Csc[c + d*x]^2*(2*(19 + 86*Cos[2*(c + d*x)] + (80*I)*Sin[2*(c + d*x)]) + (15*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*
a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*(Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]
])/Sqrt[I*a*Tan[c + d*x]]))/(120*a^2*d*Sqrt[Cot[c + d*x]]*(I + Cot[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 583 vs. \(2 (144 ) = 288\).

Time = 1.77 (sec) , antiderivative size = 584, normalized size of antiderivative = 3.21

method result size
derivativedivides \(-\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-90 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+268 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+60 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a -1060 i \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-60 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )+908 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )-420 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(584\)
default \(-\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-90 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+268 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+60 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a -1060 i \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-60 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )+908 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )-420 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(584\)

[In]

int(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/240/d*(1/tan(d*x+c))^(1/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*(15*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^4-90*I*2^(1/2)*ln(-(-2
*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^2
+268*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3+60*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^3+15*I*2^(1/2)*ln(-(-2
*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*a-1060*I*(a*ta
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)-60*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*ta
n(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)+908*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^
(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-420*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a^3/(a*tan(d*x+c)*(1+I
*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 370 vs. \(2 (136) = 272\).

Time = 0.26 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.03 \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {{\left (30 \, a^{3} d \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 30 \, a^{3} d \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (-i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (-83 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 64 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 16 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \]

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/120*(30*a^3*d*sqrt(-1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(2*sqrt(2)*(I*a^3*d*e^(2*I*d*x + 2*I*c) - I
*a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/
8*I/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 30*a^3*d*sqrt(-1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*
log(-4*(2*sqrt(2)*(-I*a^3*d*e^(2*I*d*x + 2*I*c) + I*a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*
x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/8*I/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - s
qrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(-83*I*e^
(6*I*d*x + 6*I*c) + 64*I*e^(4*I*d*x + 4*I*c) + 16*I*e^(2*I*d*x + 2*I*c) + 3*I))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

Sympy [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cot {\left (c + d x \right )}}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(sqrt(cot(c + d*x))/(I*a*(tan(c + d*x) - I))**(5/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\cot \left (d x + c\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(cot(d*x + c))/(I*a*tan(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

[In]

int(cot(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(cot(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)